
Abstract. A size-consistent ab initio formalism to calcu-
late correlation corrections to ionization potentials as
well as electron a�nities of periodic systems is presented.
Our approach is based on a Hartree-Fock scheme which
directly yields local orbitals without any a posteriori
localization step. The use of local orbitals implies non-
zero o�-diagonal matrix elements of the Fock operator,
which are treated as an additional perturbation and give
rise to localization diagrams. Based on the obtained local
orbitals, an e�ective Bloch Hamiltonian is constructed to
second order of perturbation theory with all third-order
localization diagrams included. In addition, the summa-
tion of certain classes of diagrams up to in®nite order in
the o�-diagonal Fock elements as well as the Epstein-
Nesbet partitioning of the full Hamiltonian are discus-
sed. The problem of intruder states, frequently encoun-
tered in many-body perturbation theory, is dealt with by
employing the theory of intermediate Hamiltonians. As
model systems we have chosen cyclic periodic structures
up to an oligoethylene ring in double-zeta basis; however,
the theory presented here straightforwardly carries over
to in®nite periodic systems.
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1 Introduction

In order to render ab initio correlation calculations on
ground state properties as well as on excited states of
large systems numerically accessible, numerous ap-

proaches have been explored during recent years. On
molecules, a number of correlation methods have been
formulated based on local and localized orbitals [1, 2],
and experience has been collected for in®nite periodic
systems [3±6]. By the method of local increments [7], for
example, correlated ground state properties of covalent
[8±12] and ionic [13±16] systems have been obtained. A
similar method has been explored to obtain correlation
corrections [17, 18] to the valence band-structure. For
polymers, correlated band-structure calculations have
been presented recently by FoÈ rner et al. [19], based on
localized Wannier orbitals, and we should mention the
work of Borrmann and Fulde [20], where as further
localization, in order to calculate a correlated band-
structure, the bond-orbital approximation is employed.
A completely di�erent approach to correlated band-
structure calculation has been established by Grobelsik
[21] or Sun and Bartlett [22±24] which operates entirely
in the reciprocal space.

The decisive aspect of the methods using localized
orbitals in large systems is the considerable reduction of
the excitation space to be taken into account in any
con®guration interaction (CI) procedure. This reduction
is due to the local nature of the correlations. As an al-
ternative to the frequent procedure of calculating ca-
nonical molecular orbitals (CMO) in the Hartree-Fock
(HF) step and localizing them afterwards, it is also fea-
sible to obtain orbitals which are already local as the
result of the HF calculation. An approach along those
lines, which has been proposed long ago [25], has been
implemented recently [26±28] by some of the authors
(and independently by Sano et al. [29]), and applied
to molecules and ring systems. A somewhat di�erent
scheme to obtain localized orbitals with an entirely real-
space approach has been proposed by Shukla [30±32].

The present paper being the third one in a series on
ring molecules, we will henceforth denote [27] and [28] as
papers I and II. The implementation described in these
articles is used to obtain HF orbitals, and is the basis for
the programming of the module used to calculate the
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correlated band structures presented here. Since our
model systems consist of cyclic periodic structures, the
ionization potentials (IPs) and electron a�nities (EAs)
could be considered alternatively as the quasi band-
structure of a periodic system. We will make use of the
language of in®nite periodic systems to give emphasis to
this interpretation. Working with local HF orbitals re-
quires taking into account the o�-diagonal elements of
the Fock operator which might be done in an iterative
formulation [1, 6] or by incorporating those elements as
an additional perturbation into the many-body pertur-
bation theory (MBPT) [33]. Here we follow the second
path, calculating in local HF orbitals an e�ective Bloch
Hamiltonian to second order of perturbation theory
with all third-order diagrams included which arise due to
the o�-diagonal elements in the Fock operator [referred
to as localization diagrams, LMP2(3)]. We discuss the
problem of intruder states frequently encountered in
MBPT and propose several intermediate Hamiltonians
to overcome the numerical di�culties pertaining to
them. Where needed, particularly when some additional
care has to be taken, the diagramatic formulation of the
corresponding Bloch equations is made explicit. As
model systems for the application of these Hamiltonians
we use a C2H4� �13 ring in minimal basis and a C2H4� �7
ring in double-zeta (DZ) basis, using each time the
geometry of polyethylene for the unit cell.

The paper is organized as follows: in Sect. 2 we give a
short review of the theory of e�ective Hamiltonians
(2.1), propose intermediate Hamiltonians (2.2), and
discuss the possible inclusion of some in®nite-order
summations (2.3). In Sect. 3 we present our numerical
results and Sect. 4 summarizes our conclusions.

2 Theory

2.1 Bloch equation for the e�ective Hamiltonian

Here we brie¯y give the main equations of the theory of e�ective
Hamiltonians. A more detailed treatment was given by Lindgren
and Morrison [34] and the theory has been rediscussed and en-
larged by several authors [35±37]. The complete Hilbert space is
thereby divided into a ®nite subspace P of dimension d, called the
model space, and its orthogonal complement Q, as indicated by the
corresponding projection operators:

P �
Xd

m�1
mihmj j Q �

X
a

aihaj j P � Q � 1 �1�

A wave operator X is constructed to yield d exact solutions Wa of
the full Hamiltonian H when operating on their projections Wa

0
onto the model space P , that means:

Wa � XWa
0 �a � 1; . . . ; d� �2�

where

Wa
0 � PWa; HWa � EaWa �3�

With these quantities an e�ective Hamiltonian Heff is de®ned to
recover the exact eigenenergies when operating on the projected
functions Wa

0 in the model space according to:

HeffW
a
0 � EaWa

0 �4�
This Hamiltonian can be constructed from the wave operator X as

Heff � PHXP �5�
Now the Bloch e�ective Hamiltonian is obtained with a wave op-
erator which obeys the generalized Bloch equation

X;H0� � � V Xÿ XPV XP� � �6�
where the Hamiltonian H has been partitioned into a zeroth-order
Hamiltonian H0 and a perturbation V . We comment on this later
on. In a perturbative approach, Eq. (6) is calculated order by order,
the ®rst three orders being given by

�X�1�;H0�P � QVP �7�

�X�2�;H0� � QV X�1� ÿ X�1�PVP �8�
and

�X�3�;H0� � QV X�2�P ÿ E�2�X�1� �9�
Once the wave operator is calculated, the e�ective Hamiltonian is
given by Eq. (5), where the application of H causes the e�ective
Hamiltonian to be one order higher than the corresponding wave
operator. Provided that the basis used is orthonormal, the terms
appearing in Eqs. (5), (7) and (8) can be evaluated in normal form
by means of Wick's theorem and might be represented by Gold-
stone diagrams [34]. Up to this point the theory is straightforward,
all diagrams which we took into account being given in the ap-
pendix. It should be noted, however, that the second term in Eq. (8)
gives rise to so-called backfold diagrams. We would like to point
out that in the construction of X�2� no exclusion-principle-violating
(EPV) diagrams should be included, as is usually done to cancel the
last term in Eq. (9).

In keeping with our desire to calculate correlation corrections to
the excited states, the theory is applied as explained in the following
for the case of particles, the hole case being completely equivalent.
The HF calculation provides orthonormal and local occupied as
well as virtual orbitals, denoted by a, b, c and r, s, t, respectively. To
denote the elements of the e�ective Hamiltonian, l and g will be
used instead of r, s, t. With the application to periodic systems in
mind, each such index comprises a cell index, an orbital index, and
a spin index. From these orbitals, the model space P is constructed
to contain the (N+1)-electron determinants cyr Wscfij created from
the HF ground state Wscfij by adding a particle to the orbital r

P �
X

r

cyr WscfihWscfj jcr �10�

The orthogonal complement Q is approximately given by the single
and double excitations applied to the model space, speci®cally

Q �
X
a;s;r

cyscacyr WscfihWscfj jcrcyacs

�
X

a;b;s;t;r

cyt cyscbcacyr WscfihWscfj jcrcyacybcsct

�11�

The entire Hamiltonian H is split into the zeroth-order Hamilto-
nian H0 and the perturbation V � H ÿ H0. As zeroth-order Ham-
iltonian we take the diagonal of the Fock operator F in the model
space

H0 �
X

r

Frr Frr � hr Fj jri jri � cyr jWscfi �12�

Consequently, as mentioned above, the o�-diagonal elements will
appear as an additional perturbation with respect to the case of the
treatment in CMOs, where F is diagonal and H0 � F .

In the following applications we calculate the e�ective Hamil-
tonian to second order in perturbation theory and include all the
third-order diagrams, which contain at least one o�-diagonal Fock
matrix element as additional perturbation due to the localization.
Henceforth, these diagrams are referred to as localization diagrams;
we abbreviate this level of theory by LMP2(3).

The Bloch e�ective Hamiltonian being in general non-hermit-
ian, it is symmetrized by
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hljHeffjgi � hgjHeffjli
2

�13�
To order the excited states, each of them will be associated with a
quasi wavenumber k, labeling its irreducible representation of the
group of rotations of the ring system considered; k plays the same
role as the wavenumber used in in®nite periodic systems, but is a
discrete quantity for ®nite cyclic systems. To this end, the e�ective
Hamiltonian is rewritten with explicit indices

jli � jrl; ol;Rli �14�
where the spin variable rl is taken to be � 1

2 (and is omitted
henceforth), thus applying the usual approximation of spin de-
generate excited states. The vectors Rl denote the unit cell where
the orbital ol is located. Where the notation is clear, we will write
simply l instead of ol. Exploiting the rotational symmetry of a
cyclic periodic system allows us to keep one cell index always in the
reference cell 0, so that

�Heff�Rl;g � hl0jHeffjgRi �15�
These matrix elements can be considered as representing a hopping
of an electron from orbital l located in cell 0 to an orbital g in cell
R. In ®nite cluster approaches to solid state band structures, these
matrix elements are extracted from molecular type calculations
[17, 18], whereas here the complete system is considered. Having
obtained the quantity �Heff�Rl;g, we follow the same procedure as
depicted by GraÈ fenstein et al. [17, 18], i.e. the real space matrix is
transformed into the quasi reciprocal space k by virtue of

Hlg�k� �
X
R

eikRh0ljH jgRi �16�

where the index ``eff'' has been omitted. Diagonalization in the
(quasi) reciprocal space yields the eigenfunctions and eigenenergies.
Save for this last trivial step, all calculations are done in real space,
particularly no summation or integration in the reciprocal space are
needed at any step of the procedure.

2.2. Intruder states and intermediate Hamiltonians

MBPT su�ers from the problem of intruder states, as has been
pointed out and discussed by several authors [37, 38]. In general
they are due to a strong coupling between the model space P and
the outer space Q. This coupling will take place if two states which
are similar in energy belong to the two di�erent spaces. In the
framework of the theory employed here, this is easy to see. A di-
agram such as the one in Fig. 1 represents in the lower part the
operator sequence QVP , where a state jgi 2 P is mixed by the per-
turbation V with the determinant cyrca jti 2 Q. The formula corre-
sponding to this diagram in the notation of the appendix isX
art

�tgjra�
Dag

tr

X
s

�ltjas�Fsr

Dag
ts

�17�

where the denominator

Dag
tr � �a � �g ÿ �t ÿ �r � �g ÿ �t � �r ÿ �a� � �18�

invoked by the commutator in the Bloch equations represents the
energy di�erence between the two states in P and Q, respectively,

and might lead to numerical convergence problems in the case
depicted in Fig. 2, where the energy of jgi is already as high as the
energy of cyrca jti, resulting in a minute energy denominator. One
solution to the problem consists in simply ignoring the high-energy
states. For many practical cases this should cause no problems,
since those states, well separated from the lower ones, should not
contribute much to the correction of the lower conduction bands or
EAs, respectively. In fact, Bartlett and co-workers proposed the
same procedure in their reciprocal-space approach when encoun-
tering this problem, giving a formula for the critical energy, beyond
which the states in the model space are neglected (Eq. 47 in [22]).
For the cases studied in this work, this turned out to be su�cient.
However, from a theoretical point of view it seems favorable to
have a procedure at hand which treats those cases more rigorously.

The theory of intermediate Hamiltonians [35±37] strives to
avoid the strong coupling between the model space P and the ex-
citations contained in Q, splitting the model space into a main
model space Pm and an intermediate space Pi. In the case at hand,
Pm will contain the low-lying excitations, while the troublesome
high-energy states as jgi in Fig. 2 will be placed in the intermediate
space.

The intermediate Hamiltonian is now constructed by means of
an additional wave operator R to give only exact energies in the
main model space, the energies being placed in the intermediate
space losing their strict physical signi®cance. The equations corre-
sponding to Eqs. (2), (3), (4), and (5) are, with P � Pm � Pi

Wa � R �W
a
0 �a � 1; . . . ; dm� �19�

�Wa
0 � PWa; HWa � EaWa �20�

Hint
�Wa
0 � Ea �Wa

0 �21�
Hint � PHRP �22�
For the construction of R we choose

PRP � P �23�
and are left with the principal equation

QRPm � QRPiXPm � QXPm �24�
It should be noted that X is now de®ned as before, but with respect
to Pm with dimension dm < d instead of the entire model space P .

As discussed by Heully et al. [37], one can conceive di�erent
choices for the term QRPi. In the following we look at two cases,
called case I and case II, translate the corresponding Bloch equa-
tions into the necessary diagrams, and point out their merits with
respect to the construction of an e�ective Hamiltonian.

Case I employs the simple choice

QRPi � 0 �25�
leading to the Bloch equation

Fig. 1. A diagram which might give rise to the problem of intruder
states

Fig. 2. A sketch of energy levels which cause a vehement coupling
between the spaces P and Q in the evaluation of the diagram in
Fig. 1
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Q R;H0� �Pm � Q V Xÿ XV X� �Pm �26�
It is immediately evident from Eq. (26) and Fig. 1 that the intruder
state problem is suppressed this way by virtue of the operator Pm on
the right-hand side of Eq. (26) which excludes states with too high
an energy (jgi) in the diagram in Fig. 1. It should be noted, how-
ever, that in this way the intermediate Hamiltonian is rendered
strongly non-hermitian, since Pm excludes to the right, i.e. at the
bottom of the diagrams, the part Pi of the model space.

Case II constructs consequently also the part QRPi, leading to
[37] the coupled equations

Q R;H0� �Pm � Q V �Xÿ �XV �X
ÿ �

Pm ÿ QRPi X;H0� �Pm �27�

Q R;H0� �Pi � Q V ÿ �XV
ÿ �

Pi �28�
�X :� Pm � Q� �X �29�
Again, there is a partial suppression of the states in Pi which
manifests itself in the de®nition of �X. Also the operator Pm to the
right has evidently the same e�ect as discussed above. However, in
the presence of intruder states, the second equation will again in-
troduce numerical divergencies. They are avoided by repartitioning
the Hamiltonian as proposed by Heully

~H0 �H0 � PiWPi �30�
� Pm � Q� �H0 �

X
i

�ijiihij �31�
The additional perturbation W acts only in the intermediate space,
and it can be easily checked that the substitution

~V � V ÿ W �32�
will not a�ect Eqs. (27) and (28), yielding

Q R; ~H0

� �
Pm � Q V �Xÿ �XPmV �X

ÿ �
Pm ÿ QRPi X; ~H0

� �
Pm �33�

Q R; ~H0

� �
Pi � Q V ÿ �XPmV

ÿ �
Pi �34�

�X :� Pm � Q� �X �35�
However, care has to be taken when treating the waveoperator X
with this partitioning. Rewriting Eq. (6) with P replaced by Pm

results in

X; ~H0

� �
Pm � �V ÿ W �XPm ÿ XPmV XPm� � () �36�

X; ~H0 ÿ W
� �

Pm � V XPm ÿ XPmV XPm� � �37�
so X still has to be calculated with H0 � ~H0 ÿ W . Having conve-
niently shifted the energies of the intermediate space this way, the
coupling between Pi and Q poses no problem any more. We now
turn to a discussion of the modi®cations necessary in the diagrams
of the e�ective Hamiltonian, and the additional diagrams needed
which appear here for the ®rst time.

The e�ect of the operator Pm to the right of a term and at the
bottom of a diagram has been emphasized already. Secondly, the
omission of Pi in �X leads via the term QV �XPm to a suppression of

the type of diagrams represented by the ®rst diagram of Fig. 3,
where X is followed by a state in Pi. The same term gives rise to the
omission of the class of diagrams depicted by the second diagram in
Fig. 3, where the second-order operator leads into the intermediate
space, whereas exclusively the Q space is admitted. As for the rest of
the diagrams, no special care has to be taken as long as the clas-
si®cation of the states by Pm and Pi and the shift due to the operator
W are taken into account. However, the diagrams so far do not
represent the novel term ÿQRPi X;H0� �Pm in Eq. (33) and (34),
which reads for the intermediate wave operator to second order R�2�

ÿQR�1�Pi X�1�; ~H0

h i
Pm �38�

The corresponding diagram is given in Fig. 4 and should be eval-
uated according to Eq. (38) instead of applying the usual evaluation
rules, which would lead to wrong energy denominators. The correct
result is

ÿ
X
artT

�ltjra��Ttjar�FT gDg
T �

Dag
tr DaT �

tr Dg
T

�39�

In particular the commutator in Eq. (38) gives rise to an energy
numerator Dg

T � � �g ÿ �T � where the asterisk at the index of the
intermediate state T indicates that the shifted energy is to be used.
In contrast to this, the energy denominator Dg

T originating from the
operator X�1� must be constructed with the unshifted energy as
discussed above (Eq. 37). Having thus circumvented the coupling
between Pi and Q, we conclude by remarking that the partitioning
of the model space might introduce also a strong coupling between
Pi and Pm, which is present both in case I and in case II, the latter
being manifest by the energy denominator Dg

T in Eq. (39). This
possible coupling is usually resolved by diagonalizing the entire
model space. In our case this might lead to a blurring of the so-far
localized orbitals. Alternatively, the operator X�1� can be adjusted
by a 2� 2 matrix diagonalization of the two mixing states [39, 40].

Having proposed a method to treat the intruder states, we like
to emphasize that they do not only pose a purely technical obstacle
or a convergence problem, but have also a physical aspect. If one
considers for instance the photoelectron ionization (PES) spectrum,
the mixing between 1-hole and 2-hole±1-particle states (2h±1p) is a
physical phenomenon. It is well known in molecular physics, where
from the forth IP onward the Koopman's states (essentially 1-hole)
remain usually identi®able as intense peaks, but are embedded into
a forest of non-Koopman's or satellite states, which are essentially
of 2h±1p character and of weaker intensity. Of course, all eigen-
states are a mixing of 1h and 2h±1p single determinants, since they
interact through the bielectronic Hamiltonian. One may say that
the 2h±1p state spreads the 1h states by mixing with them and
taking a part of their absorption intensity [41, 42]. Going to
extended periodic systems (through ®nite systems) increases this
mixing process. The correspondance between the PES spectrum
and a distribution of essentially 1h states can only be seen as a
simpli®cation. When one leaves the Fermi level toward higher en-
ergies, all eigenstates have mixed 1h and 2h±1p character, and the
study of the exact density of states would become a very demanding
task due to this extent and density of near degeneracies originating
from the electronic correlation, i.e. the bielectronic nature of H.

Fig. 3. Diagrams which represent interactions passing through the
intermediate space (denoted as T ) at the bottom (left side) and at
the top (right side)

Fig. 4. The only diagram representing Eq. (38) together with its
exchange partner
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Our procedure, which sacri®ces the details of the mixing between
1h and 2h±1p determinants, can be seen as an approximate way to
approach the ``band spectrum'' after correlation. The use of a
strictly degenerate zeroth-order picture avoids the appearance of
vanishing (and positive) energy denominators in the perturbation
expansion once intermediate Hamiltonians are used, i.e. masks the
nondegeneracy e�ects which we would face, if we were using Bloch
functions. Our procedure gives some information of a rather virtual
1h spectrum responsible for the photoemission which should be
broadened by a more accurate calculation of the e�ect of 2h±1p
states. Except for the region of the Fermi level, the perturbative
calculation employing Bloch functions would become intractable.
Employing localized orbitals, i.e. introducing the delocalization
after the correlations of the e�ective Fock-matrix elements, can be
seen as a trick to escape this dilemma. However, one should bear in
mind the approximate character of this procedure.

2.3 In®nite order summations

Some special higher-order diagrams can be summed up to in®nite
order without any increase in the computational e�ort, provided
that no additional summation indices are introduced. We ®rst
concentrate on summing certain classes of diagrams by repeatedly
adding the perturbation due to the o�-diagonal Fock-matrix ele-
ments. Adding just one element Fsr to the diagram in Fig. 1 results
in changing also an index for the Coulomb perturbation of this
particular third-order diagram, whereas adding another Frs element
restores the sequence of r and s for the integrals and leads to an
additional factor

FrsFsr

Dag
ts Dag

tr
�40�

The summation obtained by the series of diagrams with
1; 3; 5; . . . ; �2n� 1� Fock elements as indicated in Fig. 5 leads to the
following correction of Eq. (17)X
arts

�tgjra��ltjas�Fsr

Dag
tr Dag

ts ÿ F 2
sr

�41�

Similarly, diagrams with 2; 4; . . . ; 2n Fock elements can be summed
over to giveX
arts

�tgjra��ltjar�F 2
sr

Dag
tr Dag

ts ÿ F 2
sr

ÿ �
Dag

tr

�42�

We would like to point out that a naive correction of all the dia-
grams in the appendix would lead erroneously to diagrams which
do not correspond any more to the Bloch equations of Eq. (6).

Rather, the construction of the diagrams of higher orders have to
be derived carefully from those equations. Speci®cally, to construct
an in®nite series based on the backfold diagram in Fig. 16 of the
Appendix, the origin of the underlying terms like :::PVPVPVPVP has
to be derived by successive insertion of the Bloch equations order
by order. For example, inserting Eq. (7) in Eq. (8) yields

�X�2�;H0� � QV QVP ÿ QVP PVP �43�
where the last term gives rise to the backfold diagram of Fig. 16.
Note that it is essential to keep in mind how the wave operators
have been inserted in order to get the energy denominators right. In
Eq. (43) X�1� is marked by a box so as to trace it back. The third-
order equation

�X�3�;H0� � QV X�2�P ÿ X�2�PVP ÿ X�1�PV X�1�P �44�
is thus transformed, using Eq. (7) and Eq. (43), into

X�3�;H0

h i
� QV QV QVP ÿ QVP VP

ÿ QV QVP ÿ QVP VP PVP

ÿ QVP PV QVP

�45�

The second term contains in its second part a sequence

QVP VP PVP �46�
and is at the origin of the series we are looking for. From the
construction it can be seen that each further term PVP � PFP gives a
factor (ÿ1), and that the backfold character is kept, so that the 3-F
diagram in this series is given by Fig. 6. Note that there is no such
series related to the diagrams four and six of Fig. 16, since the
repetition of the state jli would go through the P -space, an event
which is not allowed by the Bloch equations without changing the
diagram type by invoking backfold diagrams.

The same kind of summation was used for the ground-state
energy calculations in papers I and II ([27] and [28]). Additionally
the Epstein-Nesbet (EN) corrections [43] were applied, using the
diagonal of the exact Hamiltonian H as zeroth-order Hamiltonian
H0 rather than the diagonal of the Fock operator F , i.e.

H0 �
X

i

jiihijH jiihij �47�

We use jii � cyr jWscfi when i denotes a particle state and
jii � cajWscfi when i runs over the occupied orbitals. This simply
changes the energy denominators, as for example in the case of
Fig. 1 and Eq. (17) with the abbreviations Jar � �aajrr�,
Kar � �arjar� as
Dag

rt ! Dag
rt � Jar ÿ Kar � Jat ÿ Kat ÿ Jrt � Krt �48�

This result is nothing else than an in®nite summation of certain
classes of diagrams as it was shown above for the summation
of Fock-matrix elements. As an example, the left side of Fig. 7

Fig. 5. The type of diagram obtained by adding pairwise Fock-
matrix elements to the diagram in Fig. 1. The doubly waved line
indicates the in®nite series of Fock elements

Fig. 6. This ®fth-order diagram forms part of the in®nite series of
Fock-operator insertions to the backfold diagram in Fig. 16.
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displays the diagram of Fig. 1 with one additional interaction line,
giving rise to the factor

Kar

Dag
tr

�49�

which gives as summation series together with the denominator Dag
tr

in the prefactor (Eq. 17) an overall denominator

Dag
tr ÿ Kar �50�

in agreement with Eq. (48). A similar suggestion had been put forth
by Yaris [44]. We note however, that contrarly to the case of the
ground-state energy calculation, not all terms can be rigorously
obtained this way. For example, the additional interaction line
shown in the second diagram of Fig. 7 introduces an energy de-
nominator which is absent in the original diagram without that
interaction line. Despite this fact, which is closely linked to the non-
hermiticity of the e�ective Bloch Hamiltonian, we stuck to the ®rst
point of view of the EN formulation as given in Eq. (47). We thus
favor a somewhat more hermitian Hamiltonian. This decision
should be without loss of generality and is similar to prefering case
II over case I in Sect. 2.2

3 Numerical results

To demonstrate the feasibility of our approach, we
performed calculations on two C2H4� �n rings as cyclic
periodic test systems. The unit cell C2H4� � was taken
to be the unit cell of polyethylene in the geometry used
by KoÈ nig and Stollho� [45], i.e. rCÿC � 0:1536 nm,
rCÿH � 0:1083 nm, �CÿCÿC � 112:7�; and �HÿCÿH �
106:8�. Details of the algorithm employed to obtain
the HF solution in local orbitals and examples of
applications both for HF and for correlation calcula-
tions are given in papers I and II ([27] and [28]).

3.1 E�ective Hamiltonians: LMP2(3)

In this section the e�ective Bloch Hamiltonian was
constructed using the Mùller-Plesset (MP) perturbation
theory to third order in the sense discussed above. The
deep±lying states originating from the 1s orbitals of the
carbon atoms as well as states with rather high energies
have been ignored to avoid the problem of intruder
states to be dealt with in Sect. 3.3 In the cases treated
here this does not imply a signi®cant loss of accuracy, as
is also shown in Sect. 3.3

To begin with, the in¯uence of the number of
neighbors of the central unit cell taken into account
during the correlation calculation on the ®nal result is
investigated to ®nd reasonable cut-o� criteria. In a ®rst
step, only excitations within the central unit cell itself
were used in the correlation calculation. Next, the two
next-nearest neighbors were added to the correlation
range. The process had been continued until conver-
gence on the results was achieved. The most pronounced
advantage of our direct-space approach and the use of
local orbitals consists in the fact that the contribution of
excitations involving orbitals separated by up to a dis-
tance d is supposed to decrease rapidly with d. If this is
the case, as it is expected in covalent and ionic systems, a
cut-o� radius R can be de®ned beyond which the cor-
relation space does not need to be taken into account,
thus rendering correlation calculations for large and
even in®nite periodic systems accessible and feasible. To
ensure that the distance decreases with the increasing
number of the coordination sphere of the central cell, a
rather large ring is chosen. Speci®cally, we calculated the
excitation spectrum for a C2H4� �13 ring in minimal all-
electron basis. Figure 8 displays our HF results. Since
the system is ®nite, the spectrum is discrete; however, a
quasi wavenumber k is used as explained above to ar-
range the levels in bands as is done for extended systems,
the group theoretical arguments being the same for both
cases. This correspondence is made explicit by the no-
tation on the abscissa in Fig. 8. Note that the X -point is
never exactly reached in ®nite systems with an odd
number of unit cells, as we present them here. For 13
unit cells we have thus seven irreducible k-points, the
highest index being at 12/13 of the full interval Cÿ X .
The ®gure (Fig. 8) shows the six valence levels together
with the lowest two conduction levels. Figure 8 also
contains the HF results of in®nite polyethylene (calcu-
lated with CRYSTAL [47]) with the same unit cell
geometry and the same basis set as used for the ring

Fig. 7. Addition of further interaction lines to some third-order
diagrams. The additional line is the one in the middle, giving rise to
Kar (left diagram) and Jbg (right diagram)

Fig. 8. Hartree-Fock (HF) spectrum for the C2H4� �13 ring in a
minimal basis. Displayed are the six valence lines and the lowest
two conduction lines. The data are indicated by diamond symbols.
The HF result for the corresponding in®nite system, polyethylene,
is shown by the solid lines. For the ®nite ring the k-values extend up
to D � 12

13 X
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calculations. Thus, despite the discrete nature of the ring
problem and the minimal basis employed, the ``band-
structure'' of the ring already reveals the characteristic
features of a full periodic calculation, and can be well
compared to that published by Karpfen [46].

We proceed by calculating an e�ective Hamiltonian
to third order in the sense discussed above. Figure 9
shows the results for the calculations concerning two of
the upper valence lines where excitations within one,
three, and ®ve cells had been allowed. The correspond-
ing data are represented by long dashed, dashed, and
dotted lines, respectively. The HF result has been added
as solid lines. To keep the graph simple, only two of the
four lines at the top of the valence spectrum are shown.
A comparison between the calculations with the cut-o�
range of one neighboring cell (dashed lines) and those
where a cuto� radius of two cells has been applied
(dotted lines) allows us to conclude that it is su�cient to
con®ne the excitation space to the central cell together
with the ®rst neigbor to the left and right. This cuto�
range has been used throughout the remainder of this
work.

Next a somewhat smaller C2H4� �7 ring has been
considered. Again the geometry of polyethylene was
used for the unit cell as before. However, the basis is
now the DZ basis of Huzinaga [48], which was used with
slight modi®cations in the calculations of Karpfen [46] as
well as in the work of KoÈ nig and Stollho� [45] con-
cerning polyethylene. In our work we employed Huzi-
naga's 7s3p set contracted to 4s2p for the C atom
without scaling factors and his 4s set contracted to 2s at
the H atom [48]. In Fig. 10 the HF results (solid lines)
are compared to the overall LMP2(3) results obtained
with an e�ective Hamiltonian (dotted lines) and Fig. 11
depicts in more detail the correlation corrections for two
of the upper valence lines (bottom panel) and the two
lowest conduction lines (top panel). The contributions of
the second and third order are indicated as dashed and
dotted lines, respectively. The discrete k values are
marked with symbols for some of the lines. The overall
e�ect consists in a shift of the levels towards the gap. In
the case of the valence lines, Fig. 11 shows in its lower
part that the third-order localization diagrams [MP(3)]
bear a signi®cant part of that shift, whereas in the case of
the conduction levels the role of the third-order local-

ization contribution is a pure squeezing of the lines. This
can be seen by comparing the MP2 results (dashed) with
the MP2(3) data (dotted) in the upper part of Fig. 11.
The overall MP(3) contribution amounts to 5±10% of
the second-order e�ect.

3.2 E�ective Hamiltonian with in®nite summations and EN
corrections

Still sticking to the e�ective Bloch Hamiltonian, the
in®nite-order summations in the Fock-matrix elements
as well as the EN corrections are applied. Firstly, the
additional contribution of the EN correction with
respect to the MP results is compared in the second
order. Figure 12 displays the results of MP2 (long
dashed) for two of the upper valence lines with the
EN-corrected data to second order (EN2, dashed).
Clearly, the EN approach gives a remarkable correction.

Fig. 9. Two of the four upper valence lines for the C2H4� �13 ring.
The solid lines repeat the HF results of Fig. 8, whereas the long-
dashed, dashed, and dotted lines display the third-order corrections
LMP2(3) with one, three and ®ve cells being correlated, respectively

Fig. 10. The upper four valence lines and lower two conduction
lines of the C2H4� �7 ring are displayed as solid lines for the HF
results and dotted lines for the LMP2(3) correlation corrections

Fig. 11. The two lowest conduction lines (upper panel) as well as
two of the four highest valence lines (lower panel) of the C2H4� �7
ring are depicted on HF level (solid lines). They are corrected to
second order (LMP2) as indicated by the dashed lines and with
third-order localization diagrams included [LMP2(3)] as shown by
the dotted lines
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The contribution of the third-order localization dia-
grams with MP might be added to the EN2 results. This
is depicted by the dotted lines. From this it is evident
that the EN2 approach gives an additional correlation
contribution to the MP2 results (dashed versus long
dashed line in Fig. 12) which is even more pronounced
than the contribution of the third-order corrections with
MP theory (dotted versus dashed line).

The ground-state energy as well as the upper two IP
(indexed ``1'' and ``2'') and the lowest two EA (indexed
``3'' and ``4'') at the points C and 6

7 X in the ``Brillouin
zone'' are compared for the di�erent levels of the theory
in Table 1. Also shown is the ``gap'' as the di�erence
LUMOÿ HOMO which happens to be located at the C-
point. For the EN results the change with respect to the
HF calculations is added as a percentage. The overall
change brought about by LMP2 with respect to HF can
be estimated from these data to be around 10%. The
second-order results are in turn augmented by the third-
order localization contribution by an average of again
10%. Taking into account in®nite-order summations of
some classes of localization diagrams (column
``MP � F1'' in Table 1) adds again almost the same
amount. Furthermore, the EN results in second order

have an even more pronounced e�ect with respect to
ordinary MP2 than the MP(3) corrections. Finally, the
results of the EN approach for the third-order diagrams
together with the in®nite-order summation of certain
classes of localization diagrams are given in the last col-
umn of Table 1. They lead once more to a more pro-
nounced third-order e�ect. In fact, the results for the
correlated ground-state energy mirrors these tendencies.
It should be pointed out that in this work the weight is
put on the comparison between the di�erent methods
employed rather than on the presentation of state-of-the-
art calculations. Our overall reduction of the gap of 16%
is certainly limited by the basis set (DZ). For the case of
polyacetylene, Sun and Bartlett [22] have carefully ana-
lyzed the basis-set dependence of the band gap and re-
ported a reduction of 16.7% using a STO-3G basis versus
40.4% with a DZP basis. However, they applied
MBPT(2) in the reciprocal space using canonical orbitals,
which corresponds in our approach to taking into ac-
count all localization diagrams to in®nite order. In this
respect, our reduction of 16% seems reasonable in its
order of magnitude. Since we dealt with oligoethylene in
a middle-sized basis only, we do not strive to enter into
the present controversy regarding polyacetylene. Just for
the sake of completeness we note that FoÈ rner et al. [19]
performed band-structure calculations on polyacetylene
as well, using a local approach; however, their results do
not coincide with the results of Sun and Bartlett and
neither with those of Suhai [49, 50]. For the ground-state
energy of polyethylene, correlation corrections are made
available by KoÈ nig and Stollho� [45], obtained by em-
ploying more elaborate correlation methods involving
®nite cluster approximations. They obtain a correlation
energy of 0.2922 au; Suhai reported 0.3042 with a 6-
31G** basis [51].

3.3 Intermediate Hamiltonians

As pointed out in Sect. 2.2, taking into account particles
with high energies might give rise to intruder states. The

Table 1. Ground-state energy E0 (in Hartree) and the energies (in
eV) of the upper two valence levels (indexed ``1'' and ``2'') and the
lower two conduction levels (indexed ``3'' and ``4'') at the G point
and at the point 6

7 X , for the di�erent levels of theory. Note that at

the X-point the levels 1 and 2, 3 and 4, are degenerate. The gap
(contained in the last line) is the di�erence �3�C� ÿ �2�C�. For the
Epstein-Nesbet (EN) quantities the change with respect to the
Hartree-Fock (HF) results is indicated in parentheses

Second order Third order on top of

MP2 EN2

HF MP EN MP MP� F1 EN� F1
E0 )77.919 )0.1307 )0.1535 )0.1326 )0.1594 )0.2141

�1�C� )12.96 )12.04 )11.79 (10%) )11.91 )11.87 )11.48 (13%)
�2�C� )10.97 )10.80 )10.73 (2%) )10.78 )10.77 )10.66 (3%)
�3�C� 4.31 3.40 3.11 (39%) 3.39 3.25 2.51 (42%)
�4�C� 4.85 3.92 3.63 (34%) 4.06 3.90 3.49 (39%)
�1�67 X � )13.22 )11.84 )11.45 (15%) )11.73 )11.65 )11.13 (19%)

�2�67 X � )12.14 )10.78 )10.40 (17%) )10.68 )10.61 )10.11 (20%)

�3�67 X � 7.25 6.41 6.11 (19%) 6.41 6.27 5.30 (37%)

�4�67 X � 8.19 7.43 7.16 (14%) 7.52 7.41 6.80 (20%)
Gap 15.28 14.20 13.84 (10%) 14.17 14.02 13.17 (16%)

Fig. 12. The correlation corrections to second order (LMP2) for
two of the upper valence lines are represented (long-dashed lines)
and compared to the Epstein-Nesbet (EN) results in the same
order, i.e. EN2 (dashed lines). The additional e�ect of the ordinary
localization diagrams LMP(3) is indicated for the sake of
comparison (dotted)
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same holds for deep-lying hole levels. In the case of the
�C2H4�7 ring in DZ basis, intruder states were observed
for the valence lines, once the deep-lying levels are
included in the model space. In Fig. 13 the LMP2(3)
correction to the HF results (solid) of two of the upper
valence lines are indicated as dotted lines. This time,
all �N ÿ 1�-electron determinants had been included in
the model space. Clearly, the correlation correction
is severely overestimated as a consequence of some
dangerously small energy denominators. To meet this
di�culty, the theory of intermediate Hamiltonians
assembles these troublesome states in an intermediate
model space. Thus a knowledge of their correlation
corrections is sacri®ced in favor of calculating their e�ect
on the correlation corrections of the main model space.
To be speci®c, we recalculated the valence lines with an
intermediate Hamiltonian based on Eqs. (27), (28), and
(29), again on the LMP2(3) level. The result has been
added as dot-dashed lines in Fig. 13. As shift parameter
we used 30 au in Eq. (31). Owing to this shift, the strong
coupling is suppressed and the results are converged, as
can be seen in Fig. 13. However, in the present case the
e�ect of the deep-lying levels is minute and a simple cut-
o� in the energy, as applied to the e�ective Hamiltonian
in the previous two sections, does not constitute a
signi®cant approximation.

4 Conclusion

In conclusion, a size-consistent multi-reference method
has been realized to calculate the correlation corrections
of the IP and EA or, put another way, the ``quasi band-
structure'', of cyclic periodic systems. The decisive aspect
of the approach presented is the use of local HF orbitals
apt to reduce the correlation space to a ®nite environ-
ment of the central cell, so that the method is applicable
to in®nite systems as well. The approach is based on the
theory of the generalized Bloch E�ective Hamiltonian
which has been constructed to second order. The
additional perturbation due to the use of non-canonical
orbitals has been taken into account up to third order.

The summation of certain classes of diagrams up to
in®nity both for the localization as well as for the
Coulomb perturbation, and the relation of this proce-
dure to the EN partitioning of the Hamiltonian were
studied. Based on the theory of intermediate Hamilto-
nians, suggestions were put forth to treat the intruder
state problem. All diagrams and necessary changes to
some of them according to the type of theory employed
were given. Finally, two ring systems, �C2H4�13 and
�C2H4�7 with polyethylene geometry for the unit cell,
served as test systems. The EN and third-order local-
ization contributions gave signi®cant contributions on
top of the MP2 results. Subject to the basis set
constraints, the corrections were found to be reasonable
in their order of magnitude as compared to the literature
for related systems.
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Appendix A. diagrams of the e�ective Hamiltonian

The evaluation of the Bloch equation (Eq. 6) is
considerably facilitated by Wick's theorem for operator
products in normal form and the use of diagramatic
representations as put forth in the book of Lindgren and
Morrison [34]. Since our basis of local HF orbitals is
orthonormal, this procedure is immediatly applicable.
The notation follows that of Lindgren and Morrison,
and is repeated in Fig. 14. The variables designate spin-
space orbitals. Again only the case of particles is
considered, the treatment of holes being completely
analogous. Arrows pointing downwards generally rep-
resent core orbitals and have indices (a, b, c); those
pointing upwards represent valence or virtual orbitals
and are labeled (r, s, t). To address exclusively valence
orbitals, a double arrow pointing upwards and lower-
case Greek letters are used. To specify that an orbital is
virtual, but not a valence orbital, a triangular arrow
upwards is used together with upper case letters (R, S,
T). In backfold diagrams, the backfolded double arrow
is circled to remember that it is still a valence orbital,
not a core orbital. Furthermore the convention
� �abkrs� :� �abjrs� ÿ �rbjas� is adopted together with the
abbreviation Dab

rs � �a � �b ÿ �r ÿ �s.

Fig. 13. Intruder-state e�ects for two of the upper valence lines. The
LMP2(3) results as obtained with an e�ective Hamiltonian where
all �N ÿ 1�-electron determinants were included in the model space
are shown as bold lines. They give a far too large correction to the
HF results (solid lines) as a consequence of the intruder states. The
intermediate Hamiltonian leads to the improved calculation, shown
as dot-dashed lines Fig. 14. Diagramatic notations as explained in the text
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To second order, the diagrams for the matrix element

hljHeff ÿ E0 jgi �A1�
of the e�ective Bloch Hamiltonian are shown in Fig. 15.
We note in passing that the ®rst order simply consists of
the o�-diagonal Fock-operator elements. In all the
diagrams these elements are just denoted by F , and it
should be kept in mind that only these o�-diagonal
elements form part of the perturbation:

Fij � hij F jji 1ÿ dij
ÿ � �A2�

In the second order, the Fock matrix is invoked by the
®fth diagram of Fig. 15 which assumes that some of the
particle states

jT i � cyt jWscfi �A3�
have been attributed to the Q-space, as indicated by the
use of capital letters and empty triangular arrows. The
lower two diagrams originate from the fact that subtr-

acting the ground-state energy E0 in Eq. (A1) does not
exactly cancel the corresponding diagrams of the e�ective
Hamiltonian owing to the presence of the additional
particle in state l. Thus these diagrams are meant to
represent only the EPV diagrams with respect to l.

The diagrams of the third order, which contain at least
one Fock-operator element, are given in Figs. 16, 17,
and 18. Again, the diagrams of Fig. 18 are to be taken
care of only in as far as they constitute EPV diagrams
with respect to l. Note that, in third order, backfold
diagrams appear for the ®rst time. They are due to the
second term of Eq. (8). A rough classi®cation of these
diagrams with respect to the second order consists in
considering the diagrams of Fig. 16 as the natural ex-
tension of the ®rst two diagrams in Fig. 15 and those in
Fig. 17 as the ones originating from the next three dia-
grams of the second order, whereas the diagrams of
Fig. 18 correspond to the last two diagrams of Fig. 15.
As an example of the straightforward evaluation of these
diagrams, we give the formula for the ®rst two lines of
Fig. 16:X
art

�tgjra�
Dag

tr
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where one has to make sure that EPV diagrams are
avoided.

These diagrams form the basis of the LMP2(3) pro-
gram, the third order being bracketed since we neglected
the terms with three Coulomb interactions. The capital
``L'' in the abbreviation reminds us that a localized basis
is used.

Fig. 15. All second-order diagrams of the e�ective Bloch Hamil-
tonian. The last two diagrams are meant to represent only the
exclusion-principle-violating diagrams with respect to l

Fig. 16. Diagrams of Heff
�3� originating from the ®rst two diagrams of Fig. 15
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